同轴线的结构由外到内依次为护套、外导体层、绝缘介质层和内导体四个部分组成。下面分别介绍一下每一部分的作用。
护套,即较外面是一层绝缘层,起保护作用。
外导体作为屏蔽层有双重作用,它既可以通过传输回路来传导低电平,又具有屏蔽作用。外导体通常有3种结构。
1、金属管状。这种结构采用铜或铝带纵包焊接,或者是无缝铜管挤包拉延而成,这种结构形式的屏蔽性能较好,但柔软性差,常用于干线电缆。
2、铝塑料复合带纵包搭接。这种结构有较好的屏蔽作用,且制造成本低,但由于外导体是带纵缝的圆管,电磁波会从缝隙处穿出而泄漏。
3、编织网与铝塑复合带纵包组合。是从单一编织网结构发展而来的,它具有柔软性好、重量轻和接头可靠等特点,采用合理的复合结构,对屏蔽性能有很大的提高,目前这种结构形式被大量使用。
绝缘介质,PE材质,主要是提高抗干扰性能,防止水、氧侵蚀。
内导体,铜是内导体的主要材料,可以是以下形式:退火铜线、退火铜管、铜包铝线。通常小电缆内导体是铜线或铜包铝线,而大电缆用铜管,以减少电缆重量和成本。对大电缆外导体进行扎纹,这样可以活获得足够好的弯曲性能。
同轴线结构上属于双导体传输线,在其横截面上能够建立类似静态场的电磁场分布,同轴线的特点之一就是可从直流段一直应用到毫米波波段。
同轴线主要以TEM模的方式广泛应用于宽频带馈线和元器件的设计中。当传输信号的波长远大于传输线长度,在传输线上各点的电流(或电压)的大小和相位可近似相同,此时无须考虑分布参数效应。但是当传输信号的波长与传输线长度可相互比拟时,传输线上各点的电流(或电压)的大小和相位各不相同,显现出分布参数效应,此时传输线就必须作为分布参数电路处理,这意味着同轴线中将出现TE和TM模,即同轴线的高次模。
按照同轴线应用的位置,大致可以分为3种类型。
1、干线电缆:其绝缘外径一般为9mm以上的粗电缆,要求损耗小,柔软性要求不高。
2、支线电缆:其绝缘外径一般为7mm以上的中粗电缆,要求损耗小, 同时也要一定的柔软性。
3、用户分配网电缆:其绝缘外径一般为5mm,损耗要求不是主要的,但要求良好的柔软性和室内统一直协调性。
同轴电缆中的特性阻抗指的是什么?
特性阻抗:又称“特征阻抗”,它不是直流电阻,属于长线传输中的概念。在高频范围内,信号传输过程中,信号沿到达的地方,信号线和参考平面(电源或地平面)间由于电场的建立,会产生一个瞬间电流,如果传输线是各向同性的,那么只要信号在传输,就始终存在一个电流I,而如果信号的输出电平为V,在信号传输过程中,传输线就会等效成一个电阻,大小为V/I,把这个等效的电阻称为传输线的特性阻抗Z。信号在传输的过程中,如果传输路径上的特性阻抗发生变化,信号就会在阻抗不连续的结点产生反射。影响特性阻抗的因素有:介电常数、介质厚度、线宽、铜箔厚度。
特性阻抗是射频传输线影响无线电波电压、电流的幅值和相位变化的固有特性,等于各处的电压与电流的比值,用表示。在射频电路中,电阻、电容、电感都会阻碍交变电流的流动,合称阻抗。电阻是吸收电磁能量的,理想电容和电感不消耗电磁能量。阻抗合起来影响无线电波电压、电流的幅值和相位。同轴电缆的特性阻抗和导体内、外直径大小及导体间介质的介电常数有关,而与工作频率传输线所接的射频器件以及传输线长短无关。也就是说,射频传输线各处的电压和电流的比值是一定的,特征阻抗是不变的。
目前无线通信系统射频器件有两种特性阻抗,一种是50W,用于*微波、GSM、WCDMA等系统;另一种是75W,用于有线电视系统,一般应用较少。
我们常用的同轴电缆分射频电缆和视频电缆,射频电缆的特性阻抗是50Ω而视频电缆的特性阻抗是75Ω,做为使用者不需要测试它,只要你用得合适就可以了,一般我们目测这些电缆就可以看出它的质量好坏,你可以根据需要购买相应的类型电缆,电缆的型号与特性阻抗都印在它有外护层上。